Saturday, 8 June 2019

How brassinosteroid signaling makes roots grow longer under nitrogen deficiency

As sessile organisms, plants rely on their ability to adapt the development and growth of their roots in response to changing nutrient conditions. One such response, known to be displayed by plants grown in low nitrogen conditions, is the elongation of primary and lateral roots to explore the surrounding soil. This adaption to the lack of the essential element nitrogen is of particular interest, as it reflects a "foraging strategy," by which the root system can exploit nutrients from a larger soil volume. Until recently, this was the least understood nitrogen-dependent root response. Scientists from the IPK in Gatersleben have now identified the hormone pathway regulating root foraging under low nitrogen conditions and a signalling component that modulates the intensity of this response. These findings open up the possibility of breeding crops with root systems enabling more efficient nitrogen uptake.

* This article was originally published here